Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment.
نویسندگان
چکیده
We have determined the structure of Pvu II methyltransferase (M. Pvu II) complexed with S -adenosyl-L-methionine (AdoMet) by multiwavelength anomalous diffraction, using a crystal of the selenomethionine-substituted protein. M. Pvu II catalyzes transfer of the methyl group from AdoMet to the exocyclic amino (N4) nitrogen of the central cytosine in its recognition sequence 5'-CAGCTG-3'. The protein is dominated by an open alpha/beta-sheet structure with a prominent V-shaped cleft: AdoMet and catalytic amino acids are located at the bottom of this cleft. The size and the basic nature of the cleft are consistent with duplex DNA binding. The target (methylatable) cytosine, if flipped out of the double helical DNA as seen for DNA methyltransferases that generate 5-methylcytosine, would fit into the concave active site next to the AdoMet. This M. Pvu IIalpha/beta-sheet structure is very similar to those of M. Hha I (a cytosine C5 methyltransferase) and M. Taq I (an adenine N6 methyltransferase), consistent with a model predicting that DNA methyltransferases share a common structural fold while having the major functional regions permuted into three distinct linear orders. The main feature of the common fold is a seven-stranded beta-sheet (6 7 5 4 1 2 3) formed by five parallel beta-strands and an antiparallel beta-hairpin. The beta-sheet is flanked by six parallel alpha-helices, three on each side. The AdoMet binding site is located at the C-terminal ends of strands beta1 and beta2 and the active site is at the C-terminal ends of strands beta4 and beta5 and the N-terminal end of strand beta7. The AdoMet-protein interactions are almost identical among M. Pvu II, M. Hha I and M. Taq I, as well as in an RNA methyltransferase and at least one small molecule methyltransferase. The structural similarity among the active sites of M. Pvu II, M. Taq I and M. Hha I reveals that catalytic amino acids essential for cytosine N4 and adenine N6 methylation coincide spatially with those for cytosine C5 methylation, suggesting a mechanism for amino methylation.
منابع مشابه
Substrate recognition by the Pvu II endonuclease: binding and cleavage of CAG5mCTG sites.
The Pvu II restriction endonuclease (R. Pvu II) cleaves CAG downward arrowCTG sequences as indicated, leaving blunt ends. Its cognate methyltransferase (M. Pvu II) generates N4-methylcytosine, yielding CAGN4mCTG, though the mechanism by which this prevents cleavage by R. Pvu II is unknown. The heterologous 5-methylcytosinemethylation CAG5mCTG has also been reported to prevent cleavage by R. Pvu...
متن کاملCircular permutation of DNA cytosine-N4 methyltransferases: in vivo coexistence in the BcnI system and in vitro probing by hybrid formation.
Sequence analysis of the BcnI restriction-modification system from Bacillus centrosporus revealed four open reading frames (bcnIC, bcnIR, bcnIB and bcnIA) that are arranged as two converging collinear pairs. One pair encodes a putative small regulatory protein, C.BcnI, and the restriction endonuclease R.BcnI. The other two gene products are the DNA cytosine-N4 methyltransferases M.BcnIA and M.B...
متن کاملSequence, internal homology and high-level expression of the gene for a DNA-(cytosine N4)-methyltransferase, M.Pvu II.
The base sequence of the pvuIIM gene has been determined. This gene codes for a DNA-(cytosine N4)-methyltransferase, M.Pvu II. The base sequence contains a single large open reading frame that predicts a 38.3kDa polypeptide, consistent with experimental data. The pvuIIM gene contains some sequences common to DNA methyltransferases in general, but includes none of the sequences specifically cons...
متن کاملStructure, function and mechanism of exocyclic DNA methyltransferases.
DNA MTases (methyltransferases) catalyse the transfer of methyl groups to DNA from AdoMet (S-adenosyl-L-methionine) producing AdoHcy (S-adenosyl-L-homocysteine) and methylated DNA. The C5 and N4 positions of cytosine and N6 position of adenine are the target sites for methylation. All three methylation patterns are found in prokaryotes, whereas cytosine at the C5 position is the only methylatio...
متن کاملThe replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1.
Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 25 14 شماره
صفحات -
تاریخ انتشار 1997